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• Copenhagen Research Platform (CARP)

CHALLENGES
• (Technical) Challenges in Mobile Sensing (in 
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• ... and what to do about them
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• How do I see the future of mobile sensing in 

Mental Health?
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Occulomotor. Sensors: camera, light sensor
Eye movements and pupillary reflex have been used for several
decades in neurological disease research. Careful examination of
both allows to probe the medial temporal lobe memory system,22

the cholinergic neuronal pathways,23 the progressive neuropatho-
logical changes within the newcortex24,25 and the brain dopamine
activity.26

Visual preference. The Visual Paired Comparison active test is
administered by presenting on a screen a series of image pairs to
a subject; these pairs include images that have previously been
shown to the user.27 Healthy control eyes consistently perform
more fixations on the novel image, whereas pre-AD subjects do
not.22 Given the amount of new information we all receive from
our tablets, a passive test that measures the fixation time on each
new or old graphic presented to a user could be devised in order
to quantify the extent of neuronal loss in the medial temporal
lobe.

Pupillary reflex. Pupillary constriction and dilation in response to
light intensity changes is an efficient way to evaluate the central
cholinergic dysfunction and consists a balance of forces exerted
by the iris sphincter and dilator muscles. In an active test
developed previously23,28 where a light flashes while the subject
eyes are recorded using a high speed camera, it was shown that
AD patients had significantly lower pupil constriction velocity and
acceleration. Similarly, it was shown that pupillary reflex caused by
abrupt changes in the illumination in a room were significantly
different between patients with AD and controls.29 Today’s phone
and tablet cameras have enough resolution to capture pupil
diameter at high frame rate, thus providing the potential for a
high frequency, pupillary reflex passive data collection.

Eye movements in reading. Reading is a complex process that
involves optical sensory function, cognitive processing of incom-
ing information and occulomotor functions. Using standard text
and a high speed eye tracker, researchers showed that patients
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Fig. 1 Consumer wearable and mobile devices offer a large personalized, direct, and high frequency sensing potential. Microphones can
sense ambient noise and voice. Touch screens can probe for fine motor skills in swiping and typing. Cameras can register eye movements,
gaze, and pupillary reflexes as well as capture facial expression traits. Altimeters offer useful information with respect to activity and
barometers provide atmospheric pressure readings and weather data. PPG (Photoplethysmography) provides beat-to-beat heart rate
measurements (HRM), heart rate variability (HRV) and oxygen saturation (SpO2). IMU (Inertia Measurement Unit) includes accelerometer,
gyroscope and magnetometer (9 spatial values) and is used by numerous applications to track activity. Geopositioning sensors (GPS and WiFi
localization) provide accurate location information. Light sensors read ambient visible or UV radiation levels. Thermometers on rings, patches
or watches provide body temperature readings. Electromyograph sensors (EMG) found on patches or suits yield muscle group activity signals.
Electrodermograph (EDG) or Galvanic Skin Response (GSR) sensors equip patches and watches to measure the skin conductance and potential
or the skin resistance/impendance. Social interactions can be monitored using proximity to Bluetooth or Wi-Fi enabled devices as well as by
monitoring overall phone use (calls, texts) and social network activity. Finally, wearable/mobile devices are equipped with logic components
that can probe the executive function and memory of a user

L.C. Kourtis et al.
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Scripps Research Translational Institute npj Digital Medicine (2019) ����9�

Kourtis, L. C., Regele, O. B., Wright, J. M., & Jones, G. 
B. (2019). Digital biomarkers for Alzheimer’s disease: the 
mobile/wearable devices opportunity. NPJ digital 
medicine, 2(1), 9.
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Digital Phenotyping
• Continuous

– 24/7, longitudinal,
• Ambulatory

– “in-the-wild”, at home, ...
• Unobtrusive

– consumer / everyday technology
– mobile / wearable sensing

• Large N’s
– large-scale deployment
– “cheap” technology

• Inference & Insights
– behavior, cognition, health, ...
– based on health data science (AI/ML)

(c) Jakob E. Bardram – www.bardram.net

• JP Onnela & SL Rauch (2016). Harnessing Smartphone-Based Digital 
Phenotyping to Enhance Behavioral and Mental Health. 
Neuropsychopharmacology. 41(7): 1691–1696.

• SH Jain, BW Powers, JB Hawkins & JS Brownstein (2015). The digital 
phenotype. Nat Biotech, 33(5), 462–463. 

• TR Insel (2017). Digital phenotyping: Technology for a new science of 
behavior. JAMA, 318(13), 1215–1216. 

DIGITAL PHENOTYPE

Phone 
Sensors

Health 
Sensors

Phone 
Interaction

Voice & 
Speech App UsageEMA

BIOSIGNALS
- Glucose
- Blood pressure
- Weight
- …

COGNITION
- Reaction time
- Attention
- Memory
- …

BEHAVIOR
- Physical Activity
- Location
- Social Activity
- … 

MEDICAL
- Diagnosis 
- Medicine
- Mood
- …
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Copenhagen Research Platform – CARP

Large-scale data science platform for digital phenotyping 
and personal health technology

• Open source [programming] framework
– multi-project platform used in many mHealth applications
– developed and shared w industry partners

• Sharing
– multi-study platform
– analysis of data across multiple studies 

• Privacy & Security
– enabling privacy & security as part of platform (GDPR)
– secure local hosting @ DTU Computerome

• Standardization
– part of open international standards
– FHIR, IEEE 1752, ORK, ORS, ...

carp.cachet.dk

6
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CARP Components
UUID owner
String name
String description

StudyProtocol

int id

Trigger

String name

Task

DataType type

Measure

DataEndPointType type
DataFormat format

DataEndPoint

bool isMasterDevice
String roleName
List<DataType> supportedDataTypes

Device

* * *

*

CARP Core
- domain model and standards

CARP Mobile Sensing (CAMS)
- mobile & wearable sensing framework

The Currently Anonymous Mobile Sensing Framework • 111:15

Table 1. Measures available in CAMS, their availability on Android and iOS (+ : available, - : not available), and what package
they belong to. Top part are the sampling packages built into CAMS; middle part lists the external sampling packages, and
the lower part sampling packages for wearable devices. The external packages are available for download at pub.dev

.

Type Android iOS Package Description

accelerometer + + sensors Accelerometer data from the built-in phone sensor
gyroscope + + sensors Gyroscope data from the built-in phone sensor
pedometer + + sensors Step counts from the device on-board sensor
light + - sensors Ambient light from the phone’s front light sensor
device + + device Basic device information
battery + + device Battery charging status and battery level
screen + - device Screen event (on/o�/unlock)
memory + + device Free memory
connectivity + + connectivity Connectivity status
bluetooth + + connectivity Scanning nearby bluetooth devices
wifi + + connectivity SSID and BSSID from connected wi� networks
apps + + apps List of installed apps
app_usage + - apps List of app usage
survey + + survey User surveys via the research_package Flutter plugin

location + + context Location API on phone
activity + + context Activity as recognized by OS
weather + + context Current weather and weather forecasting
geofence + + context Entry/dwell/exit events in circular geofences
audio + + audio Records audio from the device microphone
noise + - audio Detects ambient noise from the device microphone.
phone_log + - communication Log of phone calls in/out
text_message_log + + communication Log of text messages (sms) in/out
text_message + + communication Text message (sms) events when received
calendar + + communication All calendar events from all calendars on the phone

movisens + - movisens ECG-related data from the Movisens EcgMove4 device.
esense_button + - esense Button press/release events from the eSense device.
esense_sensor + - esense Sensor events from the eSense device.

Table 1 shows a list of currently available measures in CAMS and which sampling package they belong to.
Compared to other sensing frameworks, CAMS covers most of the common set of measures and most of them
are available on both Android and iOS, which makes CAMS a good choice for cross-platform implementation of
mobile sensing. And – more packages are constantly being designed and released. The sampling package model
is also able to encompass user surveys and support for triggering surveys is supported by the survey package,
which uses the research_package Flutter plugin7.

4.3 Data Managers
As shown in Fig. 3, initialization of the study controller looks up and creates a DataManager based on the speci�ed
endpoint type in the de�nition of the study, and this data manager then subscribes to the overall events stream.

7The Flutter Research Package (research_package) is a cross-platform Flutter implementation of the Apple Research Kit and the similar
Android Research Stack.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 37, No. 4, Article 111. Publication date: August 2019.

CARP Research Package
- informed consent & survey framework

CARP Cognition Package
- 14 pre-made cognitive test & API for extending

CARP Web Services (CAWS)
- cloud-based infrastructure for data management

7
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Data Collection
Physiological

– weight, height, ...
– ECG, HR, HRV, blood pressure...
– Blood glucose

Behavioral
– physical activity (steps, movement, ...)
– social activity (communication, calendar, messaging, ...)
– phone usage (screen, connectivity, ...)

Contextual
– location (geo-position, geofence, ...)
– weather, air quality

Patient-Reported
– surveys
– ecological momentary assessments (EMA)
– audio & video

Cognition
– 8 Neurocognitive domains 
– 14 validated gold-standard cognitive tests

8
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Cross-platform Mobile Sensing

Version March 21, 2022 submitted to Sensors 18 of 19

Table A2. Measures available in CAMS, their availability on Android and iOS (+ : available, - :
not available), and which package they belong to. The top part lists the sampling packages built
into CAMS; the middle part lists the external sampling packages, and the lower part lists sampling
packages for wearable devices. The external packages are available for download at pub.dev.

Type Android iOS Package Description

accelerometer + + sensors Accelerometer data from the built-in phone sensor
gyroscope + + sensors Gyroscope data from the built-in phone sensor
pedometer + + sensors Step counts from the device on-board sensor
light + - sensors Ambient light from the phone’s front light sensor
device + + device Basic device information
battery + + device Battery charging status and battery level
screen + - device Screen event (on/off/unlock)
memory + - device Free memory

connectivity + + connectivity Connectivity status
bluetooth + + connectivity Scanning nearby bluetooth devices
wifi + + connectivity SSID and BSSID from connected wifi networks
location + + context Request the location of the phone.
geolocation + + context Listens to location changes.
activity + + context Activity as recognized by OS
weather + + context Current weather and weather forecasting
air_quality + + context Local air quality from land-based air pollution stations
geofence + + context Entry/dwell/exit events in circular geofences
audio + + audio Records audio from the device microphone
noise + + audio Detects ambient noise from the device microphone.
phone_log + - communication Log of phone calls in/out
text_message_log + - communication Log of text messages (sms) in/out
text_message + - communication Text message (sms) events when received
calendar + + communication All calendar events from all calendars on the phone
apps + - apps List of installed apps
app_usage + - apps App usage over time
survey + + survey User surveys via the Flutter research_package

movisens + - movisens ECG-related data from the Movisens EcgMove4 device.
esense + + esense Sensor and button events from eSense devices.
health + + health Wearable device data from Apple Health / Google Fit.

18. Hossain, S.M.; Hnat, T.; Saleheen, N.; Nasrin, N.J.; Noor, J.; Ho, B.J.; Condie, T.; Srivastava, M.; Kumar, S. mCerebrum: A 534

Mobile Sensing Software Platform for Development and Validation of Digital Biomarkers and Interventions. Proceedings of 535
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doi:10.1145/3131672.3131694. 537

19. Ranjan, Y.; Rashid, Z.; Stewart, C.; Conde, P.; Begale, M.; Verbeeck, D.; Boettcher, S.; Dobson, R.; Folarin, A. RADAR-Base: Open 538

Source Mobile Health Platform for Collecting, Monitoring, and Analyzing Data Using Sensors, Wearables, and Mobile Devices. 539

JMIR Mhealth Uhealth 2019, 7, e11734. doi:10.2196/11734. 540

20. Torous, J.; Wisniewski, H.; Bird, B.; Carpenter, E.; David, G.; Elejalde, E.; Fulford, D.; Guimond, S.; Hays, R.; Henson, P.; et al. 541

Creating a Digital Health Smartphone App and Digital Phenotyping Platform for Mental Health and Diverse Healthcare Needs: 542

an Interdisciplinary and Collaborative Approach. Journal of Technology in Behavioral Science 2019, 4, 73–85. doi:10.1007/s41347- 543

019-00095-w. 544

21. Bardram, J.E.; Frost, M. Double-Loop health technology: Enabling socio-technical design of personal health technology in clinical 545

practice. In Designing Healthcare That Works: A Sociotechnical Approach; 2017. doi:10.1016/B978-0-12-812583-0.00010-9. 546

22. Bardram, J.E. The CARP Mobile Sensing Framework – A Cross-platform, Reactive, Programming Framework and Runtime 547

Environment for Digital Phenotyping. arXiv preprint arXiv:2006.11904 2020. 548

23. Rohani, D.A.; Quemada Lopategui, A.; Tuxen, N.; Faurholt-Jepsen, M.; Kessing, L.V.; Bardram, J.E. MUBS: A Personalized 549

Recommender System for Behavioral Activation in Mental Health. Proceedings of the 2020 CHI Conference on Human Factors in 550

Computing Systems, 2020, pp. 1–13. 551

24. Kumar, D.; Maharjan, R.; Maxhuni, A.; Dominguez, H.; Frølich, A.; Bardram, J.E. mCardia: A Context-Aware Ambulatory ECG 552

Collection System for Arrhythmia Screening. ACM Transactions on Computing for Healthcare 2022. doi:https://doi.org/10.1145/3494581.553

25. Bardram, J.E.; et al.. DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 554

Diabetes. In submission 2022. 555

• Bardram, J. E. (2020). The CARP Mobile Sensing Framework--A Cross-
platform, Reactive, Programming Framework and Runtime Environment for 
Digital Phenotyping. arXiv preprint arXiv:2006.11904

• Bardram, J. E. (2022). Software Architecture Patterns for Extending Sensing 
Capabilities and Data Formatting in Mobile Sensing. Sensors, 22(7), 2813
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Devices
•Movisens Move4 (activity)
•Movisens EcgMove4 (activity, ECG)
•Nokia Bell Labs eSense (noise, activity)
•Polar Sense & H10 (HR/ECG)
•Empatica E4 (HR, GSR, activity)

•Apple Health
•Google Fit / Health Connect

•Dexcom (CGM)
•Garmin (activity, sleep, HR, ...)
•Fitbit (activity, sleep, HR, BP, ECG, weight, 
•Withings (activity, sleep, HR, BP, ECG, weight, ...)

(c) Jakob E. Bardram – www.bardram.net10
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Patient Reported Data (PRO)

11
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Cognition
• 14 validated gold-standard cognitive tests

• 8 Neurocognitive domains
– Sensation
– Perception
– Motor skills and construction
– Attention and concentration
– Memory
– Executive functioning
– Processing speed
– Language and verbal skills

Multiple Object 
Tracking

Picture Sequence 
Memory

Visual Array 
Change

12
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“CARP Studies” App (standard, out-of-the box)

• Triggering of user tasks
– surveys, cognitive tests, EMAs
– notifications

• Sensor data collection
– on-board mobile sensing
– wearable devices 

• Informed Consent (eConsent)
• On-going study information
• Internationalization (DA, EN, ES, FR, ...)
• Cross-platform (Android & iOS)
• Infrastructure-independent (upload data to 

any backend server)
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(Technical) Challenges in Mobile Sensing

(c) Jakob E. Bardram – www.bardram.net

The Fallacy that Smartphones 
are Ubiquitously Available#1

#2 Accessing Sensors

#3 (Background) Sensing

#4 Adherence to Sensing

15
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#1 – The “Ubiquitous” Computing Platform

(c) Jakob E. Bardram – www.bardram.net16

2 Franz Gravenhorst et al.

their own, as well as situational and financial barriers
[38].

Self-assessment and monitoring tools combined with
professional decentralized and user-centered pervasive
healthcare systems have the potential to reach more
patients more e�ciently and therefore decrease their
su↵ering [2].

Smartphones as Mobile Healthcare Sensors

From a technological point of view, mobile phones of-
fer a promising hardware platform for various applica-
tions in the pervasive and mobile healthcare domain.
In developed countries almost everybody owns at least
one mobile phone; world-wide this adds up to 4.5 bil-
lion users [18]. The trend is continuing, reaching out
to developing countries and making phones ideal tools
for leveraging the vision of providing healthcare every-
where, anytime and to anyone [2].

The modern smartphone is an ideal platform for
pervasive healthcare applications. Here we outline three
key reasons. Firstly, smartphone ownership has increased
exponentially in the last decade. Smartphones accounted
for 51.8% of mobile phone sales in 2013 worldwide [26].
As of 2014, one third of the currently world-wide used
mobile phones are already smartphones [18]. In contrast
to the dissemination of other technologies, the rapid
uptake of smart phones is not restricted to developed
countries [88]. Their cost has dropped dramatically and
functionality continues to expand.

Secondly, a smartphone is a powerful technical plat-
form. It comes with extensive computational power in
terms of CPU, memory, and battery power; it has ex-
tensive communication capabilities with built-in net-
work interfaces for 3G/4G, Wifi, and Bluetooth; it is
equipped with a number of sensors including accelerom-
eters, GPS, microphone, proximity sensors, etc.; and it
has powerful touch-enabled displays that support ad-
vances gesture-based input and visualizations. In many
respects, a modern smartphone is a more sophisticated
computational platform than a regular desktop com-
puter. This aspect is described in more detail in chapter
3.

Thirdly, a smartphone is personal and is almost
always with the patient [15]. This is especially useful
in automated data collection, where the mobile phone
acts as a wearable sensor platform located in the user’s
pocket. Furthermore, studies have shown that when us-
ing a personal mobile phone, the quality of the data
collected through questionnaires is of a much higher
quality compared to the paper-based self-assessment di-
aries traditionally used [5]. Using a paper-based diary

relies on patients remembering to carry them with them
and fill them out, which often results in poor adherence
rates, last minute, retrospective completion, and mem-
ory errors [75]. In contrast, adherence and compliance
rates are significantly improved when patients use per-
sonal smartphone since a phone is much more easily
available [5].

Smartphones for Mental Health

Taken together, the above factors make smartphones
an ideal platform for supporting personal, pervasive
healthcare services to patients. Looking more specifi-
cally at supporting mental health, there are more addi-
tional benefits to the smartphone.

First, many mental disorders are treated through a
combination of pharmacotherapy (i.e. medication) and
psychological treatment such as Cognitive Behavioral
Therapy (CBT). The treatment objective is basically
to reduce the symptoms of the disease through the use
of medication and to help patients identify and change
their behavior in a healthy manner. A smartphone-
based system can be e↵ective in providing real-time
feedback to patients about behavioral patterns and help
instruct them how to change them, including through
adherence to medication. As such, CBT behavioral train-
ing based on multi-media content (text, pictures, videos)
can be provided directly to patients over the phone right
in situations where it is needed. For example, instead of
providing instructions on good sleep hygiene in a clinic
during the middle of the day, such instructions can be
provided to the patient right-on-time before going to
sleep. Similarly, continuous feedback on adherence to
medication can be provided without the need for the
clinic to interfere.

Second, consultation with patients plays a core role
in the treatment of mental disorder. Since a smartphone
is also a (video)phone, reminders, communication and
remote consultations become feasible. For example, in
many studies clinicians can send text messages to pa-
tients or phone them if needed, and in the treatment
of e.g. schizophrenic patients, video consultations have
been applied. As such, the smartphone also becomes a
platform for telemedicine in mental health.

Mobile phone usage by our target group, patients
with serious mental illnesses, is 72%. This is a bit be-
low the average usage of the general population, how-
ever non-users have expressed interest in using a phone
if beneficial for their health management [7]. Amongst
medical providers smartphone penetration is already
85%. Their most commonly used applications are drug
guides [23].

F Gravenhorst, A Muaremi, JE Bardram, ... (2015) “Mobile phones 
as medical devices in mental disorder treatment: An 
overview,” Personal and Ubiquitous Computing. 19 (2)53.

COMMENT OPEN

Digital phenotyping, behavioral sensing, or personal sensing:
names and transparency in the digital age
David C. Mohr 1✉, Katie Shilton2 and Matthew Hotopf3

Data from networked sensors, such as those in our phones, are increasingly being explored and used to identify behaviors related
to health and mental health. While computer scientists have referred to this field as context sensing, personal sensing, or mobile
sensing, medicine has more recently adopted the term digital phenotyping. This paper discusses the implications of these labels in
light of privacy concerns, arguing language that is transparent and meaningful to the people whose data we are acquiring.

npj Digital Medicine �����������(2020)�3:45� ; https://doi.org/10.1038/s41746-020-0251-5

Common networked devices like the smartphone (e.g., GPS,
keyboard touches, phone use, and communication patterns) and
wearables can provide a continuous stream of the data about an
individual’s behaviors, psychological states, and environments,
forming a picture of their lived experience1. This sensing
technology can, with varying degrees of accuracy, estimate sleep
patterns, activity, and social engagement, as well as mental health
conditions2. The application of sensing technology has enormous
potential to improve our understanding of the experience of
individuals and our capacity to deliver behavioral health
treatments. Behavioral markers inferred from sensed data are
beginning to be integrated into apps, making them simpler and
more engaging to use3,4. Such sensing apps can be integrated into
standard psychological or behavioral treatments5, or delivered as
stand-alone or coached interventions6. Passive tracking of
populations of at-risk people could facilitate early identification
and intervention for behavioral problems. These potential clinical
innovations have led to a rapidly growing field of research, and
are beginning to be developed commercially, thereby supporting
their dissemination.
As with any emerging field, there have been many different

terms used to describe this application of sensing technology. The
exploration of the use of phone sensors to estimate behaviors,
psychological states, and environmental contexts began more
than 15 years ago in computer science, where it has been referred
to variously as context sensing, reality mining, mobile sensing,
behavioral sensing, and personal sensing2. As medicine entered
the field, the name “digital phenotyping” was proposed in 20157,
and has rapidly gained currency, becoming the most commonly
used term in publications listed in PubMed. The term digital
phenotyping has been adopted by funders, including the US
National Institute of Health and the Wellcome Trust. From the
research world, the term is spreading into publications for the
healthcare industry, as well as into general media such as the New
York Times8, and is now used by companies that are commercia-
lizing these technologies. As sensing technology for health and
mental health becomes disseminated through commercialization
and general media, it is incumbent upon us to consider the
implications of the labels we use to describe it.
The language in a name provides information to an audience,

thereby framing how that audience understands the product or
service. The term digital phenotyping speaks to a medical

audience, whose oldest texts, written in Greek, provide terms still
used today, such as dyspnea (bad breathing) and melancholia
(originally black bile). The term digital phenotyping (to show a
type) provides a good description for a medical audience of the
aims and processes involved in using digital traces to identify
characteristics of an individual. It helps contextualize the field of
sensing within medicine, which provides legitimacy, and suggests
how to integrate sensing into genetics, diagnosis, and prognosis9.
But what might the term digital phenotyping signal mean to

those whose data are being used? That such sensing is medical
and scientific, perhaps? That it is complex? It does not convey to
the average person that we are engaging in a sensitive form of
surveillance: collecting large amounts of data, and using those
data to understand deeply personal things, such as how they
sleep, where they go, how and when they communicate with
others, or whether they may be experiencing a mental health
condition.
Yet, these are the people to whom we most need to explain the

risks of participation, and why they should trust us with their data.
These data are incredibly revealing, and we are asking research
participants and commercial users to be vulnerable to our
decision-making. For example, in a study of GPS data from the
phones of 1.5 million Europeans, it took only four GPS points over
15 h to identify 95% of individuals10. As we detect behaviors and
mental health conditions using sensed data, which often include
GPS, the behaviors and conditions we detect can be linked directly
to individuals, even without traditional personal identifiers. This
capability is emerging in an environment where some companies
in the digital health industry have demonstrated a remarkable lack
of regard for privacy. A recent study, which intercepted the
network traffic generated in the use of the top 30 mental health
and smoking cessation apps, found that more than 80% of the
apps shared data for advertising and marketing purposes, but only
28% disclosed this in a privacy policy11. Thus, the field of sensing
poses significant vulnerabilities in a context that has tended to
exploit rather than protect the people we aim to help.
To earn participant trust, the labels we use should increase, not

decease, the transparency of our intent (what we are doing and
why) and practice (how we are getting the data and its nature)12.
Among the terms used in computer science, mobile sensing,
behavioral sensing, and personal sensing come closest to
providing this information. “Sensing” conveys an automated,

1Center for Behavioral Intervention Technologies, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA. 2College of Information Studies, University of
Maryland, College Park, College Park, MD, USA. 3King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK. ✉email: d-mohr@northwestern.edu

www.nature.com/npjdigitalmed

Scripps Research Translational Institute
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DC Mohr, K Shilton & M Hotopf (2020). “Digital 
phenotyping, behavioral sensing, or personal 
sensing: names and transparency in the digital 
age”. NPJ digital medicine, 3(1), 45.

REVIEW ARTICLE OPEN

Digital health tools for the passive monitoring of depression:
a systematic review of methods
Valeria De Angel 1,2✉, Serena Lewis1,3, Katie White1, Carolin Oetzmann1, Daniel Leightley 1, Emanuela Oprea1, Grace Lavelle 1,
Faith Matcham1, Alice Pace4, David C. Mohr 5,6, Richard Dobson2,7 and Matthew Hotopf1,2

The use of digital tools to measure physiological and behavioural variables of potential relevance to mental health is a growing field
sitting at the intersection between computer science, engineering, and clinical science. We summarised the literature on remote
measuring technologies, mapping methodological challenges and threats to reproducibility, and identified leading digital signals
for depression. Medical and computer science databases were searched between January 2007 and November 2019. Published
studies linking depression and objective behavioural data obtained from smartphone and wearable device sensors in adults with
unipolar depression and healthy subjects were included. A descriptive approach was taken to synthesise study methodologies. We
included 51 studies and found threats to reproducibility and transparency arising from failure to provide comprehensive
descriptions of recruitment strategies, sample information, feature construction and the determination and handling of missing
data. The literature is characterised by small sample sizes, short follow-up duration and great variability in the quality of reporting,
limiting the interpretability of pooled results. Bivariate analyses show consistency in statistically significant associations between
depression and digital features from sleep, physical activity, location, and phone use data. Machine learning models found the
predictive value of aggregated features. Given the pitfalls in the combined literature, these results should be taken purely as a
starting point for hypothesis generation. Since this research is ultimately aimed at informing clinical practice, we recommend
improvements in reporting standards including consideration of generalisability and reproducibility, such as wider diversity of
samples, thorough reporting methodology and the reporting of potential bias in studies with numerous features.

npj Digital Medicine ������������(2022)�5:3� ; https://doi.org/10.1038/s41746-021-00548-8

INTRODUCTION
Depression remains the leading cause of disability worldwide1,
with a largely chronic course and poor prognosis2. Early
recognition and access to treatment, as well as a better trial
methodology, have been linked to improved treatment outcomes
and prognosis3.
The use of digital technology to track mood and behaviour

brings enormous potential for clinical management and the
improvement of research in depression. By passively sensing
motion, heart rate and other physiological variables, smartphone
and wearable sensors provide continuous data on behaviours that
are central to psychiatric assessment, such as sociability4, sleep/
wake cycles5, cognition, activity6 and movement7.
With the global trend toward increased smartphone ownership

(44.9% worldwide, 83.3% in the UK) and wearable device usage
forecast to reach one billion by 20228, this new science of “remote
sensing”, sometimes referred to as digital phenotyping or personal
sensing9 presents a realistic avenue for the management and
treatment of depression. When combined with the completion of
questionnaires, remote sensing may generate more objective and
frequent measures of mood and other core dimensions of mental
disorders, instead of relying on retrospective accounts of patients
or participants.
The first step in generating meaningful clinical information from

data derived from digital sensors is to generate features, which are
the smallest constructed building blocks, designed to explain the

behaviours of interest (see Mohr et al. 10 for a detailed analytical
framework). These low-level features are often aggregated to
define high-level behavioural markers, which can be understood
as symptoms. For example, GPS data (sensor), can be translated
into ‘location type’ (low-level feature), ‘increased time at home
location’ (high-level behaviour) derived from location data may
indicate social withdrawal or lack of energy (symptom), and may
therefore be associated with depression severity.
One of the main challenges that arise from this emerging field is

that it sits at the intersection between computer science,
engineering, and clinical science. The advantages of a multi-
disciplinary approach are evident, but these domains are yet to be
brought together efficiently11,12, giving rise to large differences in
reporting standards with the risk that reproducibility may be
threatened13.
Previous reviews in affective disorders cite the level of

heterogeneity across studies as a barrier to carrying out meta-
analytic syntheses of the results. Additionally, these reviews have
included non-validated measures of depression, and a mix of
bipolar and unipolar samples, characteristics which not only show
divergent results11,12,14, but add study diversity. There is therefore
a need for a comprehensive review of methodologies, with more
specific inclusion criteria, to highlight the sources of heterogeneity
and methodological shortcomings in the field.
Given the difficulty in extracting a clear message from the

available literature, the current work aims to review studies linking

1Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK. 2NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS
Foundation Trust, London, UK. 3Department of Psychology, University of Bath, Bath, UK. 4Chelsea And Westminster Hospital NHS Foundation Trust, London, UK. 5Center for
Behavioral Intervention Technologies, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. 6Department of Preventive Medicine, Northwestern University,
Feinberg School of Medicine, Chicago, IL, USA. 7Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College
London, 16 De Crespigny Park, London SE5 8AF, UK. ✉email: Valeria.de_angel@kcl.ac.uk
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ARTICLE OPEN

Long-term participant retention and engagement patterns in an
app and wearable-based multinational remote digital
depression study
Yuezhou Zhang 1,18, Abhishek Pratap 1,2,3,4,5,18✉, Amos A. Folarin 1,6,7,8, Shaoxiong Sun 1, Nicholas Cummins 1,
Faith Matcham1,9, Srinivasan Vairavan 10, Judith Dineley1, Yatharth Ranjan 1, Zulqarnain Rashid1, Pauline Conde1, Callum Stewart1,
Katie M. White1, Carolin Oetzmann 1, Alina Ivan1, Femke Lamers11, Sara Siddi12, Carla Hernández Rambla 12, Sara Simblett 1,
Raluca Nica13,14, David C. Mohr 15, Inez Myin-Germeys16, Til Wykes 1,7, Josep Maria Haro12, Brenda W. J. H. Penninx11,
Peter Annas 17, Vaibhav A. Narayan5,10, Matthew Hotopf1,7, Richard J. B. Dobson 1,6,7,8✉ and RADAR-CNS consortium*

Recent growth in digital technologies has enabled the recruitment and monitoring of large and diverse populations in remote
health studies. However, the generalizability of inference drawn from remotely collected health data could be severely impacted by
uneven participant engagement and attrition over the course of the study. We report findings on long-term participant retention
and engagement patterns in a large multinational observational digital study for depression containing active (surveys) and passive
sensor data collected via Android smartphones, and Fitbit devices from 614 participants for up to 2 years. Majority of participants
(67.6%) continued to remain engaged in the study after 43 weeks. Unsupervised clustering of participants’ study apps and Fitbit
usage data showed 3 distinct engagement subgroups for each data stream. We found: (i) the least engaged group had the highest
depression severity (4 PHQ8 points higher) across all data streams; (ii) the least engaged group (completed 4 bi-weekly surveys)
took significantly longer to respond to survey notifications (3.8 h more) and were 5 years younger compared to the most engaged
group (completed 20 bi-weekly surveys); and (iii) a considerable proportion (44.6%) of the participants who stopped completing
surveys after 8 weeks continued to share passive Fitbit data for significantly longer (average 42 weeks). Additionally, multivariate
survival models showed participants’ age, ownership and brand of smartphones, and recruitment sites to be associated with
retention in the study. Together these findings could inform the design of future digital health studies to enable equitable and
balanced data collection from diverse populations.

npj Digital Medicine �����������(2023)�6:25� ; https://doi.org/10.1038/s41746-023-00749-3

INTRODUCTION
To gain valuable insights into the etiology of depression and
identify effective treatments tailored to individuals, large diverse
cohorts-based studies are required to assess the underlying
temporal patterns in risk and protective factors of depression in
individuals1,2. However, dynamic day-to-day changes in behavior
in naturalistic settings are not captured effectively by conventional
clinical assessments that rely on infrequent in-person assessments
and subjective retrospective reporting of symptoms3. Additionally,
reaching and recruiting a large and diverse cohort in a cost-
effective and timely manner continues to be challenging for
conventional clinical studies4.
Due to increasing ubiquity and cost-effectiveness, smartphones

and wearable devices, compared to medical devices, allow
researchers to monitor personalized daily behaviors and physiol-
ogy over time for large and diverse populations5–7. Combined
with scalable data collection platforms, these technologies
provide high-fidelity multimodal behavior sensing capabilities8.

Several recent large-scale remote digital depression studies have
shown the feasibility of technology-based remote data collection
to assess individuals’ health and behavior9–12. For example,
sleep13, social interactions14, and mobility15–17 features derived
from digital apps, smartphones, or wearable devices, have been
demonstrated to be significantly associated with depressive
symptoms. Remote digital studies also offer an effective medium
to reach and recruit from larger and more diverse populations18

thereby considerably lowering the costs and time for creating
cohorts of interest than conventional clinical studies9.
Although previous remote digital studies have shown the

feasibility and utility of leveraging smartphones and wearable
technology for assessing behavioral changes in naturalistic
settings, long-term participant retention and engagement remain
significant challenges19,20. Moreover, differential recruitment and
retention of participants can lead to imbalanced cohorts and
biased data collection that can severely impact the generalizability
of findings21–24. For example, Pratap et al. found that four specific

1Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK. 2Krembil Center for Neuroinformatics, CAMH, Toronto, ON, Canada. 3University of
Toronto, Toronto, ON, Canada. 4University of Washington, Seattle, WA, USA. 5Davos Alzheimer’s Collaborative, Geneva, Switzerland. 6University College London, London, UK.
7South London and Maudsley NHS Foundation Trust, London, UK. 8Health Data Research UK London, University College London, London, UK. 9School of Psychology, University of
Sussex, Falmer, East Sussex, UK. 10Janssen Research and Development, LLC, Titusville, NJ, USA. 11Department of Psychiatry and Amsterdam Public Health Research Institute,
Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands. 12Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Barcelona,
Spain. 13RADAR-CNS Patient Advisory Board, King’s College London, London, UK. 14The Romanian League for Mental Health, Bucharest, Romania. 15Center for Behavioral
Intervention Technologies, Department of Preventative Medicine, Northwestern University, Chicago, IL, USA. 16Katholieke Universiteit Leuven, Leuven, Belgium. 17H. Lundbeck
A/S, Copenhagen, Denmark. 18These authors contributed equally: Yuezhou Zhang, Abhishek Pratap. *www.radar-cns.org. ✉email: abhishek.vit@gmail.com;
richard.j.dobson@kcl.ac.uk
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Figure 5: The MONARCA Android user interface.

ning. The life-cycle of this process is managed through the Couch-
Service, making use of the CouchbaseMobile class. Notifi-
cations on changes in the state of the database are provided through
the methods of ICouchClient.

The MONARCA application logic is implemented in the mo-
narca.client component. In order to create a robust and easy
to use application, it is important to ensure that the database is al-
ways running before a component tries to operate with it. As a
result, the MONARCA application has a set of components, which
are responsible for communicating and using the Android Couch-
base:

• MonarcaCouchService is a background service that pro-
vides an easy way to manage the CouchDB. When created, it
binds to the CouchService, receives an instance of the
ICouchService interface, and attempts to start up the
database. Depending on the state of the database, this might
take up to a minute. Clients have to register an ICouch-
Adapter listener to receive a Monarca CouchAdapter
instances once the database is up and running. Once the
client is notified, the registered listener is removed.

• ICouchAdapter provides the created() callback me-
thod, which is called when the database is ready for commu-
nication. Hence, all database communication routines of a
component should be placed inside this method.

• MonarcaCouchAdapter provides application specific op-
erations with the database, making use of the RESTful inter-
face provided by the CouchDB.

• LogReceiver is a subclass of BroadcastReceiver.
It acts as a “sink” for logging messages inside the MONAR-
CA application. When a component needs to log a specific
message, all it has to do is to construct an Android Intent
with one of the actions provided by the LogReceiver and
the content which needs to be logged. Once created, the In-
tent is broadcasted, intercepted by the LogReceiver and ap-
pended to one of the many log documents in the CouchDB.

The User Interface of the MONARCA system (Figure 5) is based
on the Android Activity interface. The self-assessment screen
(Figure 5(i)) is a simple screen that takes input entered by the pa-
tient and uses the CouchDB setup described above to store this data.

25
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(2012). “The MONARCA self-assessment system: 
a persuasive personal monitoring system for 
bipolar patients,” in Proceedings of the 2nd ACM 
SIGHIT International Health Informatics 
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Table 2. mHealth Sensing Frameworks and Their Functional Features

Framework

Sensing and Storage Data Processing, Analytics & Visualization Study Management

Ref.
Operating
Systems

Target
Stakehold-

ers

Integration
with

External
Sensors

Built-in
Smartphone

Sensors
EMAs &
Surveys

Data
Storage &

Cloud
Back-end

Context-
aware

Sampling

Remote
Con!gura-

tion

Data
Quality

Assessment

Data
Processing

and
Analysis

Data Visu-
alization

Behavioral
& Health
Features

User
Consent
Support

Study Setup
&

Monitoring

AndWellness [32] A R, E ! ! ! ! ! ! ! !
AWARE [24] A D, R, E ! ! ! ! ! ! ! ! !
Beiwe [85] A, I R ! ! ! ! !
CONSORTS-S [77] D ! ! ! ! ! !
Dandelion [49] N D ! ! ! !
EUPMS [80] R ! ! ! !
Emotion
Sense

[66] N R ! ! ! !

Healthopia [58] A D ! ! ! !
HealthOS [48] A D ! ! !
iEpi [29, 44] A D, R ! ! ! ! ! ! ! ! ! !
Jigsaw [51] I, N D ! ! ! ! !
Lifestreams [37] A, I D, R ! ! !
mCerebrum [35] A D, R ! ! ! ! ! ! ! ! !
MobiCon [45] A D ! ! ! ! !
mk -sense [31] A R ! ! ! ! ! ! !
MobiSens [64] A D ! ! ! ! ! !
Niima [5] R ! ! ! !
ODK Sensors [13, 15] A D ! ! !
Ohmage [84] A, I D, R, E ! ! ! ! ! ! ! !
Psychlog [27] W R ! ! ! ! !
QuestionSys [81] R !
RADAR-base [68] A D, R ! ! ! ! ! ! !
Sensus [94] A, I D, R ! ! ! ! ! ! ! !
SensingKit [39] A, I D ! ! !
StarLog [59] A R, E ! ! ! ! !
TigerAware [60] A, I R, D ! ! ! ! ! !
UbiqLog [69] A D, E ! ! ! !
Zappa [74] A D ! ! !
Bridge [11] A, I D, R ! ! ! ! ! ! ! !
CareKit [6] I D !
Context
Sensing SDK

[38] A, W D ! ! !

Funf [26] A D, R, E ! ! ! ! ! ! !
Open mHealth [57] A D ! ! ! !
Passive Data
Kit

[82] A, I D ! ! ! ! !

Purple Robot [72] A D ! ! ! !
ResearchKit [70] A D ! ! ! !
ResearchStack [71] A, I D ! ! !
The frameworks at the bottom of the table with a gray background are unpublished open-source frameworks. Operating Systems (A = Android, I = iOS, N = Nokia, W =
Windows); Target stakeholders (D = Developer, R = Researcher, E = End-user).
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Cross-Platform Sensing
• There is a fundamental need for cross-platform support across

– hardware | OS | versions | countries
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ID Sex Age YwD Days Phone Interview

P1 F 71 27 125 iOS X
P2 M 48 15 58 iOS X
P3 M 67 10 41 iOS X
P4 F 65 16 108 iOS X
P5 M 71 25 104 iOS X
P6 M 73 N/A 7 iOS –
P7 F 44 1 14 Android X
P8 M 71 20 88 iOS X
P9 M 64 N/A 3 iOS –
P10 M 69 12 110 iOS X
P11 F 67 8 38 iOS X
P12 M 71 6 124 iOS X

Overall 4/8 (F/M) 65 ± 9.3 14 ± 8.3 68 ± 46 11/1 (i/A) 10/12 (83%)

Table 2. Participants demographics. YwD: Years with T2D. Days: Days active in the study.

participated in the individual and group interviews (steps 4+5). The two drop-outs were due to technical issues
with installing and running the app on their phones. Two participants (P6, P9) completed steps 2+3 but did not
participate actively in using DiaFocus for very long (less than a week) and did not respond to the invitation to
participate in the interviews in steps 4+5. As shown in Table 2, the participants on average used DiaFocus for 68
days but with signi�cant variations between participants (±46 days) – some used it signi�cantly longer than
expected (over 100 days), while other used it signi�cantly less.
Table 3 shows the number of data points collected during the feasibility study. More than 2600 data points

were collected over a period of 5 months. As shown in Table 1, data collection includes both sensed (S) and
patient-reported (PR) data. Automatically sensed data include step count, and device and battery characteristics.
Patient-reported data include surveys (on lifestyle, well-being, emotional distress, sleep quality, depression,
anxiety, etc.) and self-reported glucose measures, weight, alcohol intake, and the number of cigarettes smoked.
Due to new privacy restrictions in the Apple App and Google Play Store, the use of location was no longer

allowed, if not used actively in the app. And since DiaFocus does not actively use location but merely samples it
in the background, the measures on location, weather, and activity classi�cation had to be disabled during the
feasibility study.

7.1 Automatically Collected Data
Table 3 shows the total number of automatically collected data; step counts, device information, and battery
status. We observe a high spread in the amount of data collected across each participant, which partly re�ects the
di�erent levels of engagement in terms of the length of use, as shown in Table 2. For example, P1, P4, P5, P10,
and P12 used DiaFocus for more than 100 days and hence have a high number of e.g., step count data. As an
illustration, Figure 9 shows the step count events for P1 and P12 over more than 100 days of sampling. Figure 9
also illustrates the color coding used on the home screen of the DiaFocus app (Figure 7a).

However, in order to investigate if sensing takes place automatically, it is relevant to investigate the so-called
‘coverage’ percentage, which is a relative measure that shows how much data was actually collected as compared
to what is expected. In this case, coverage is calculated based on step count events, which are expected to be
collected daily. Table 3 shows the coverage for each participant. We observe a high spread (SD on 32%) on the

, Vol. 1, No. 1, Article . Publication date: February 2023.

JE Bardram, C Cramer-Petersen, A Maxhuni, …(2023). “DiaFocus: 
A Personal Health Technology for Adaptive Assessment in 
Long-Term Management of Type 2 Diabetes”. ACM 
Transactions on Computing for Healthcare, 3(2).
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CARP Mobile Sensing

The CARP Mobile Sensing (CAMS) 
Flutter package is a programming 
framework for adding digital 
phenotyping capabilities to your 
mobile (health) app. 

CAMS is designed to collect research-
quality sensor data from the 
smartphone on-board sensors and 
attached off-board wearable devices.
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Flutter

Cross-platform framework
Android & iOS (web, Windows, ...)
UI framework (write once!)
compiles natively (fast!)
OS-level plugins (hackable!)

Dart programming language
modern, reactive, ... (like Swift)

Significant traction

Large number of 3rd party packages and plugins
pub.dev
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Plugin Architecture
• Allow for access to low-level OS APIs

– ... across different platforms
– access to native sensors, data, etc.

21 (c) Jakob E. Bardram – www.bardram.net
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Fig. 7. Architecture diagram of mCardia app (red components) and its use of the CAMS framework (green components)
and Flu!er plugins (blue components).

purple in Figure 7) The Movisens API connects to the EcgMove4 device via Bluetooth low energy (BTLE). But
due to the extensible plugin architecture of CAMS, any new ECG device can be used in the system by creating
a device-speci!c sampling package and registering it with CAMS, without changing anything in the app itself.

4.1 ECG Sensor Data Management and Synchronization
The Movisens EcgMove4 device is capable of recording continuous ambulatory ECG with adhesive electrodes or a
dry electrode textile chest belt; hence, avoiding the need for cables. In addition, it has on-board 3D accelerometer,
gyroscope, barometric air pressure, and temperature sensors. Table 1 lists all the data types provided by the
sensors, along with their sampling frequencies.

The Movisens device supports the “live” and “live + bu"ed” modes to communicate with these on-board sen-
sors. In “live” mode, the sensor signal can be activated via a BTLE GATT noti!cation, and if a sensor is not

ACM Transactions on Computing for Healthcare, Vol. 3, No. 2, Article 20. Publication date: February 2022.
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#2 – Accessing “Sensors”...
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COMMENT OPEN

Digital phenotyping, behavioral sensing, or personal sensing:
names and transparency in the digital age
David C. Mohr 1✉, Katie Shilton2 and Matthew Hotopf3

Data from networked sensors, such as those in our phones, are increasingly being explored and used to identify behaviors related
to health and mental health. While computer scientists have referred to this field as context sensing, personal sensing, or mobile
sensing, medicine has more recently adopted the term digital phenotyping. This paper discusses the implications of these labels in
light of privacy concerns, arguing language that is transparent and meaningful to the people whose data we are acquiring.

npj Digital Medicine �����������(2020)�3:45� ; https://doi.org/10.1038/s41746-020-0251-5

Common networked devices like the smartphone (e.g., GPS,
keyboard touches, phone use, and communication patterns) and
wearables can provide a continuous stream of the data about an
individual’s behaviors, psychological states, and environments,
forming a picture of their lived experience1. This sensing
technology can, with varying degrees of accuracy, estimate sleep
patterns, activity, and social engagement, as well as mental health
conditions2. The application of sensing technology has enormous
potential to improve our understanding of the experience of
individuals and our capacity to deliver behavioral health
treatments. Behavioral markers inferred from sensed data are
beginning to be integrated into apps, making them simpler and
more engaging to use3,4. Such sensing apps can be integrated into
standard psychological or behavioral treatments5, or delivered as
stand-alone or coached interventions6. Passive tracking of
populations of at-risk people could facilitate early identification
and intervention for behavioral problems. These potential clinical
innovations have led to a rapidly growing field of research, and
are beginning to be developed commercially, thereby supporting
their dissemination.
As with any emerging field, there have been many different

terms used to describe this application of sensing technology. The
exploration of the use of phone sensors to estimate behaviors,
psychological states, and environmental contexts began more
than 15 years ago in computer science, where it has been referred
to variously as context sensing, reality mining, mobile sensing,
behavioral sensing, and personal sensing2. As medicine entered
the field, the name “digital phenotyping” was proposed in 20157,
and has rapidly gained currency, becoming the most commonly
used term in publications listed in PubMed. The term digital
phenotyping has been adopted by funders, including the US
National Institute of Health and the Wellcome Trust. From the
research world, the term is spreading into publications for the
healthcare industry, as well as into general media such as the New
York Times8, and is now used by companies that are commercia-
lizing these technologies. As sensing technology for health and
mental health becomes disseminated through commercialization
and general media, it is incumbent upon us to consider the
implications of the labels we use to describe it.
The language in a name provides information to an audience,

thereby framing how that audience understands the product or
service. The term digital phenotyping speaks to a medical

audience, whose oldest texts, written in Greek, provide terms still
used today, such as dyspnea (bad breathing) and melancholia
(originally black bile). The term digital phenotyping (to show a
type) provides a good description for a medical audience of the
aims and processes involved in using digital traces to identify
characteristics of an individual. It helps contextualize the field of
sensing within medicine, which provides legitimacy, and suggests
how to integrate sensing into genetics, diagnosis, and prognosis9.
But what might the term digital phenotyping signal mean to

those whose data are being used? That such sensing is medical
and scientific, perhaps? That it is complex? It does not convey to
the average person that we are engaging in a sensitive form of
surveillance: collecting large amounts of data, and using those
data to understand deeply personal things, such as how they
sleep, where they go, how and when they communicate with
others, or whether they may be experiencing a mental health
condition.
Yet, these are the people to whom we most need to explain the

risks of participation, and why they should trust us with their data.
These data are incredibly revealing, and we are asking research
participants and commercial users to be vulnerable to our
decision-making. For example, in a study of GPS data from the
phones of 1.5 million Europeans, it took only four GPS points over
15 h to identify 95% of individuals10. As we detect behaviors and
mental health conditions using sensed data, which often include
GPS, the behaviors and conditions we detect can be linked directly
to individuals, even without traditional personal identifiers. This
capability is emerging in an environment where some companies
in the digital health industry have demonstrated a remarkable lack
of regard for privacy. A recent study, which intercepted the
network traffic generated in the use of the top 30 mental health
and smoking cessation apps, found that more than 80% of the
apps shared data for advertising and marketing purposes, but only
28% disclosed this in a privacy policy11. Thus, the field of sensing
poses significant vulnerabilities in a context that has tended to
exploit rather than protect the people we aim to help.
To earn participant trust, the labels we use should increase, not

decease, the transparency of our intent (what we are doing and
why) and practice (how we are getting the data and its nature)12.
Among the terms used in computer science, mobile sensing,
behavioral sensing, and personal sensing come closest to
providing this information. “Sensing” conveys an automated,

1Center for Behavioral Intervention Technologies, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA. 2College of Information Studies, University of
Maryland, College Park, College Park, MD, USA. 3King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK. ✉email: d-mohr@northwestern.edu
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Handling Permissions
• ... is a nightmare

– for the developer
– for the user

• ... and most Mobile Sensing apps are not approved or published in Apple 
AppStore / Google PLAY

– numerous rejections from the Apple App Store and Google Play when 
publishing our apps

– mental health | cardiovascular diseases | diabetes
– generic “Study App” (downloadable protocol)

• Not allowed to access
– location | unknown devices | phone data | bluetooth
– children with OCD

(c) Jakob E. Bardram – www.bardram.net24
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Sampling Package Architecture
• A sampling package is responsible for

– implementing access to sensors
– handling permissions

• Unified architecture for
– on-board sensors (e.g., location)
– wearable sensors (e.g., ECG)

• Modulization
– only include “sensors” that are 

relevant to your domain
– which you can get approved

(c) Jakob E. Bardram – www.bardram.net25
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Fig. 7. Architecture diagram of mCardia app (red components) and its use of the CAMS framework (green components)
and Flu!er plugins (blue components).

purple in Figure 7) The Movisens API connects to the EcgMove4 device via Bluetooth low energy (BTLE). But
due to the extensible plugin architecture of CAMS, any new ECG device can be used in the system by creating
a device-speci!c sampling package and registering it with CAMS, without changing anything in the app itself.

4.1 ECG Sensor Data Management and Synchronization
The Movisens EcgMove4 device is capable of recording continuous ambulatory ECG with adhesive electrodes or a
dry electrode textile chest belt; hence, avoiding the need for cables. In addition, it has on-board 3D accelerometer,
gyroscope, barometric air pressure, and temperature sensors. Table 1 lists all the data types provided by the
sensors, along with their sampling frequencies.

The Movisens device supports the “live” and “live + bu"ed” modes to communicate with these on-board sen-
sors. In “live” mode, the sensor signal can be activated via a BTLE GATT noti!cation, and if a sensor is not

ACM Transactions on Computing for Healthcare, Vol. 3, No. 2, Article 20. Publication date: February 2022.
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Fig. 7. Architecture diagram of mCardia app (red components) and its use of the CAMS framework (green components)
and Flu!er plugins (blue components).

purple in Figure 7) The Movisens API connects to the EcgMove4 device via Bluetooth low energy (BTLE). But
due to the extensible plugin architecture of CAMS, any new ECG device can be used in the system by creating
a device-speci!c sampling package and registering it with CAMS, without changing anything in the app itself.

4.1 ECG Sensor Data Management and Synchronization
The Movisens EcgMove4 device is capable of recording continuous ambulatory ECG with adhesive electrodes or a
dry electrode textile chest belt; hence, avoiding the need for cables. In addition, it has on-board 3D accelerometer,
gyroscope, barometric air pressure, and temperature sensors. Table 1 lists all the data types provided by the
sensors, along with their sampling frequencies.

The Movisens device supports the “live” and “live + bu"ed” modes to communicate with these on-board sen-
sors. In “live” mode, the sensor signal can be activated via a BTLE GATT noti!cation, and if a sensor is not

ACM Transactions on Computing for Healthcare, Vol. 3, No. 2, Article 20. Publication date: February 2022.

JE Bardram (2022). Software architecture patterns for 
extending sensing capabilities and data formatting in 
mobile sensing. Sensors, 22(7), 2813.
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#3 – Background Sensing?
• The core assumption in mobile sensing is that this runs “continuously”

– 24/7 
– in the “Background”, i.e., when the user doesn’t use the app or the phone

• ... “unobtrusively” 
– doesn’t disturb the user or require him/her to ”do” anything
– with minimal resource drain 

• battery | network | data plan (money)

• ... “collecting” data 
– from on-board sensors and the OS
– from connected devices (BLE)

(c) Jakob E. Bardram – www.bardram.net26
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Sampling Coverage

28 (c) Jakob E. Bardram – www.bardram.net
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Sampling Coverage
• “Engagement” | “Compliance” | “Adherence”

• To what degree do we collect the data we expect?

29 (c) Jakob E. Bardram – www.bardram.net

Y Zhang, ... & RADAR-CNS consortium. (2023). 
“Long-term participant retention and 
engagement patterns in an app and wearable-
based multinational remote digital depression 
study”. NPJ digital medicine, 6(1), 25.
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K Niemeijer, ... (2023). “Combining Experience 
Sampling and Mobile Sensing for Digital 
Phenotyping With m-Path Sense: Performance 
Study”. JMIR FORMATIVE RESEARCH, 7(e43296).

Figure 3. The average absolute number of measurements per hour across all participants, colored by frequency per sensor. The color range per row
varies because the sensors measure at different frequencies. The scale’s lower bound is always 0 and completely red. The maximum observed sampling
frequency for that sensor determines the upper bound. For example, weather has a value of 1 and is thus completely blue. However, in the case of
location, it is only at 166.50 that it is completely blue, with approximately 1 measurement every 22 seconds. It is also worth noting that the accelerometer
and gyroscope measurements were binned to an average value per second.

Figure 4. The relative number of measurements per hour averaged across all participants, where a value of 1 indicates that the actual number of
measurements was exactly equal to the expected number of measurements and a value of 0.50 indicates that only half of the expected number of
measurements were captured.

JMIR Form Res 2023 | vol. 7 | e43296 | p. 11https://formative.jmir.org/2023/1/e43296
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Figure 5. Gaps in the data over time per participant. Each colored bar represents a gap, as measured by the absence of accelerometer measurements
for 5 minutes. iOS: iPhone Operating System.

Furthermore, we also assessed whether there were differences
between successive OS updates. To this end, we ran a 2-way
ANOVA (α=.05) with the total gap time per participant as the
dependent variable and whether it was a new or old version of
this OS as independent variables. The classification was required
because there may be only a few participants for some OS
versions, resulting in severely unbalanced groups. For example,
there were only 9.6% (10/104) participants who used an OS
older than Android 10. iOS 15 (22/104, 21.2%) and Android
11 (30/104, 28.8%) were considered as new OS versions,
whereas iOS 14 (22/104, 21.1%; there were no older versions)
and Android 10 or lower (23/104, 22.1%) were old OS versions.
Our ANOVA results suggested that devices running Android
experienced significantly fewer gaps (mean 5.59, SD 4.01 days)
than devices running iOS (mean 1.81 weeks, SD 4.97 days;
F1,102=52.10; P<.001; η2 [partial]=0.34, 95% CI 0.22-1).
Specifically, the results show that there was a difference in the
total gap time between Android and iOS. However, there were

no differences between old and new versions within either
Android (old: mean 4.50, SD 3.87 days; new: mean 6.43, SD
3.98 days) and iOS (old: mean 1.68 weeks, SD 5.81 days; new:
mean 1.99 weeks, SD 3.32 days; F1,102=3.69; P=.06; η2

[partial]=0.03, 95% CI 0-1). Therefore, although there were
differences between Android and iOS in terms of the overall
number of gaps, the specific OS versions did not show
statistically significant differences within each OS.

One of the most likely causes of these data gaps is the OS itself,
specifically how it attempts to save energy and resources when
the device is not in use (eg, Android’s doze mode). There are
some guidelines [44] that should help prevent the app from
being gradually pushed into the background (and eventually
killed), even though both Android and Apple have become
increasingly strict in recent years on apps that consume battery
in the background. A solution that is currently being
implemented to mitigate this issue is to send a signal to the

JMIR Form Res 2023 | vol. 7 | e43296 | p. 12https://formative.jmir.org/2023/1/e43296
(page number not for citation purposes)
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Sampling Coverage
• “Engagement” | “Compliance” | “Adherence”

• To what degree do we collect the data we expect?

• This requires us to standardize what we mean by
– collect
– data
– expectation

31 (c) Jakob E. Bardram – www.bardram.net
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#4 – “Adherence” to Sensing
• Drop-off rates

– Is is basically very difficult to motivate participants to “adhere” to passive sensing
– ... or “engage” participants

(c) Jakob E. Bardram – www.bardram.net33survey response time (the time to respond to survey notifications)
and completion time (total survey completion time). Participants
in the most engaged C1 cluster of the Phone-Active data stream
had significantly shorter survey response time (73.7 [31.3, 215.8]
minutes) for the PHQ8 survey compared to 302.4 (122.3, 527.1)
minutes for the least engaged C3 cluster (Fig. 3a) (p < 0.001). This
finding is also consistent for subgroups in the Fitbit-Passive data
stream (Fig. 3a) and RSES survey (Supplementary Tables 5, 7). In
terms of survey completion time, participants in the least engaged
cluster (C3) of the Phone-Active data stream took significantly
longer (61.6 [46.1, 83.0] seconds) to complete surveys than those
in C1 (50.3 [37.9, 69.0] seconds) and C2 (49.4 [40.0, 67.0] seconds)
clusters (Fig. 3b) (p < 0.001). Likewise, the finding of survey
completion time is consistent for the Fitbit-Passive data stream
(Fig. 3b) and RSES survey (Supplementary Tables 5, 7).

Baseline depression symptom severity. The baseline PHQ8 scores
of participants were significantly different across three subgroups
(C1, C2, C3) for all three data streams. Overall, participants in the
least engaged cluster (C3) had significantly higher severity of
depressive symptoms at enrollment (Fig. 3c). For example,
participants in C3 for the Phone-Active data stream had a 4
points difference in the median baseline PHQ8 score (13.0 [7.0,
17.0]) compared to participants in the most engaged cluster (C1)
with a median baseline PHQ8 score of 9.0 (6.0, 15.0) (p= 0.003).
Similarly, in participants in cluster C3 of Phone-Passive and Fitbit-
Passive data streams showed a statistically significant difference in
the baseline PHQ8 scores compared with the most engaged
cluster (C1) (Phone-Passive - C1: 9 [6.0, 15.0]; C3: 12 [8.0,17.0] and
Fitbit-Passive - C1: 9 [6.0, 15.0]; C3: 13 [9.0, 17.5]) (p < 0.001).

Sociodemographics. The age of participants was significantly
different across the 3 clusters of Phone-Active and Phone-Passive
data streams. For the Phone-Active data stream, participants in C1
cluster had a significantly higher median (IQR) age of 53.0 (34.0,
61.5) years than participants in C2 (45.0 [31.0, 55.5]) and C3 (48.0
[32.0, 57.3]) clusters (p= 0.003). Similarly, for the Phone-Passive
data stream, participants in the most active C1 cluster had the
significantly highest median (IQR) age of 52.0 (36.5, 61.0) years
across the 3 clusters (C2: 46.5 [30.8, 56.3] years and C3: 46.0 [30.5,
57.5] years) (p= 0.01). For ethnicity (available for KCL and VUMC
sites), we found the proportion of white participants was

significantly lower in the least engaged C3 group (77.8%) than
C1 (95.1%) and C2 (84.0%) clusters for the Phone-Active data
(p < 0.001). Likewise, Phone-Passive and Fitbit-Passive data had
similar findings (Supplementary Table 11).

Phone brand, phone status, and “human-in-the-loop” (research team
contacting participants). We found the Phone-Passive data
collection to be significantly different across the smartphone
brands. In the Phone-Passive data stream, the proportion of
participants with Motorola brand phones in the least engaged C3
cluster (15%) was significantly lower than C1 (57.0%) and C2
(42.9%) (p < 0.001) (Supplementary Table 6). Also, the proportion
of participants using study provided phones in the C3 cluster
(11.7%) was significantly lower than C1 (32.6%) and C2 (29.9%)
clusters (p < 0.001) (Supplementary Table 6). Further, for Phone-
Active data stream, we found participants in the most engaged C1
cluster were contacted less frequently (3.0 [2.0, 5.0]) than those in
the C2 (5.0 [3.0, 7.0]) and C3 (5.0 [2.0, 9.0]) clusters (p < 0.001)
(Supplementary Table 5).
For the secondary cohort with a longer observation period,

unsupervised clustering of 94 weeks of individual-level engage-
ment data showed 4 clusters (C1–C4) shown in Supplementary
Fig. 6. Results of the participant characteristics enriched in the 4
engagement clusters for the secondary cohort are similar to the
results of the primary cohort and are summarized in Supplemen-
tary Tables 8–10 for the three data streams, respectively.

DISCUSSION
We report findings regarding long-term participant retention and
engagement patterns from a large European multinational remote
digital study for depression10,28. Our findings show a significantly
higher long-term participant retention than in past remote digital
health studies19,21–24. However, we show several factors, that can
significantly impact long-term participant retention and the
density of data collection in naturalistic settings. These range
from participants’ sociodemographics, and depression symptom
severity, to study app usage behavior e.g., survey response and
completion times. Here we contextualize our key findings in the
broader digital medicine context that may help inform the design
and development of remote digital studies. We also compare the
utility of using active and passive data collection for long-term

Fig. 1 Participant retention in the RADAR-MDD study. The Kaplan-Meier survival curves for (a) the primary cohort (N= 614) with an
observation period of 43 weeks, and (b) the secondary cohort (N= 313) with a longer observation period of 94 weeks stratified by Phone-
Active, Phone-Passive, and Fitbit-Passive data streams.

Y. Zhang et al.

4

npj Digital Medicine (2023) ���25� Published in partnership with Seoul National University Bundang Hospital

Y Zhang, ... & RADAR-CNS consortium. (2023). 
“Long-term participant retention and 
engagement patterns in an app and wearable-
based multinational remote digital depression 
study”. NPJ digital medicine, 6(1), 25.

Figure 5. Gaps in the data over time per participant. Each colored bar represents a gap, as measured by the absence of accelerometer measurements
for 5 minutes. iOS: iPhone Operating System.

Furthermore, we also assessed whether there were differences
between successive OS updates. To this end, we ran a 2-way
ANOVA (α=.05) with the total gap time per participant as the
dependent variable and whether it was a new or old version of
this OS as independent variables. The classification was required
because there may be only a few participants for some OS
versions, resulting in severely unbalanced groups. For example,
there were only 9.6% (10/104) participants who used an OS
older than Android 10. iOS 15 (22/104, 21.2%) and Android
11 (30/104, 28.8%) were considered as new OS versions,
whereas iOS 14 (22/104, 21.1%; there were no older versions)
and Android 10 or lower (23/104, 22.1%) were old OS versions.
Our ANOVA results suggested that devices running Android
experienced significantly fewer gaps (mean 5.59, SD 4.01 days)
than devices running iOS (mean 1.81 weeks, SD 4.97 days;
F1,102=52.10; P<.001; η2 [partial]=0.34, 95% CI 0.22-1).
Specifically, the results show that there was a difference in the
total gap time between Android and iOS. However, there were

no differences between old and new versions within either
Android (old: mean 4.50, SD 3.87 days; new: mean 6.43, SD
3.98 days) and iOS (old: mean 1.68 weeks, SD 5.81 days; new:
mean 1.99 weeks, SD 3.32 days; F1,102=3.69; P=.06; η2

[partial]=0.03, 95% CI 0-1). Therefore, although there were
differences between Android and iOS in terms of the overall
number of gaps, the specific OS versions did not show
statistically significant differences within each OS.

One of the most likely causes of these data gaps is the OS itself,
specifically how it attempts to save energy and resources when
the device is not in use (eg, Android’s doze mode). There are
some guidelines [44] that should help prevent the app from
being gradually pushed into the background (and eventually
killed), even though both Android and Apple have become
increasingly strict in recent years on apps that consume battery
in the background. A solution that is currently being
implemented to mitigate this issue is to send a signal to the

JMIR Form Res 2023 | vol. 7 | e43296 | p. 12https://formative.jmir.org/2023/1/e43296
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Domain-specific Applications
• Rather than having generic “sensing” apps ...

• ... we should allow for the design of domain-specific 
apps that ensure engagement

– can undergo a UX design process – “participant-
centric design”

– provides “something” for the participant 
– allow for “human-in-the-loop”
– allow for “disease-targeted recruitment”

• .. and can be approved in the app stores

(c) Jakob E. Bardram – www.bardram.net34
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Fig. 7. Architecture diagram of mCardia app (red components) and its use of the CAMS framework (green components)
and Flu!er plugins (blue components).

purple in Figure 7) The Movisens API connects to the EcgMove4 device via Bluetooth low energy (BTLE). But
due to the extensible plugin architecture of CAMS, any new ECG device can be used in the system by creating
a device-speci!c sampling package and registering it with CAMS, without changing anything in the app itself.

4.1 ECG Sensor Data Management and Synchronization
The Movisens EcgMove4 device is capable of recording continuous ambulatory ECG with adhesive electrodes or a
dry electrode textile chest belt; hence, avoiding the need for cables. In addition, it has on-board 3D accelerometer,
gyroscope, barometric air pressure, and temperature sensors. Table 1 lists all the data types provided by the
sensors, along with their sampling frequencies.

The Movisens device supports the “live” and “live + bu"ed” modes to communicate with these on-board sen-
sors. In “live” mode, the sensor signal can be activated via a BTLE GATT noti!cation, and if a sensor is not

ACM Transactions on Computing for Healthcare, Vol. 3, No. 2, Article 20. Publication date: February 2022.
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Figure 5. Gaps in the data over time per participant. Each colored bar represents a gap, as measured by the absence of accelerometer measurements
for 5 minutes. iOS: iPhone Operating System.

Furthermore, we also assessed whether there were differences
between successive OS updates. To this end, we ran a 2-way
ANOVA (α=.05) with the total gap time per participant as the
dependent variable and whether it was a new or old version of
this OS as independent variables. The classification was required
because there may be only a few participants for some OS
versions, resulting in severely unbalanced groups. For example,
there were only 9.6% (10/104) participants who used an OS
older than Android 10. iOS 15 (22/104, 21.2%) and Android
11 (30/104, 28.8%) were considered as new OS versions,
whereas iOS 14 (22/104, 21.1%; there were no older versions)
and Android 10 or lower (23/104, 22.1%) were old OS versions.
Our ANOVA results suggested that devices running Android
experienced significantly fewer gaps (mean 5.59, SD 4.01 days)
than devices running iOS (mean 1.81 weeks, SD 4.97 days;
F1,102=52.10; P<.001; η2 [partial]=0.34, 95% CI 0.22-1).
Specifically, the results show that there was a difference in the
total gap time between Android and iOS. However, there were

no differences between old and new versions within either
Android (old: mean 4.50, SD 3.87 days; new: mean 6.43, SD
3.98 days) and iOS (old: mean 1.68 weeks, SD 5.81 days; new:
mean 1.99 weeks, SD 3.32 days; F1,102=3.69; P=.06; η2

[partial]=0.03, 95% CI 0-1). Therefore, although there were
differences between Android and iOS in terms of the overall
number of gaps, the specific OS versions did not show
statistically significant differences within each OS.

One of the most likely causes of these data gaps is the OS itself,
specifically how it attempts to save energy and resources when
the device is not in use (eg, Android’s doze mode). There are
some guidelines [44] that should help prevent the app from
being gradually pushed into the background (and eventually
killed), even though both Android and Apple have become
increasingly strict in recent years on apps that consume battery
in the background. A solution that is currently being
implemented to mitigate this issue is to send a signal to the
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Figure 1. The newly developed app m-Path Sense was created by merging m-Path and Copenhagen Research Platform (CARP) Mobile Sensing. (A)
The m-Path Sense introduction screen, which informs participants about what is being collected while also prompting the necessary permissions. (B)
A detailed overview screen (adopted from CARP Mobile Sensing [27]) that shows what types of data are being collected (and how frequently). KU:
Katholieke Universiteit.

Mobile Sensing Functionality
m-Path Sense is capable of collecting a wide array of mobile
sensing data, depending on whether this type of data is available
on the device’s operating system (OS; ie, Android or iOS).
Table 1 lists all the available sensors responsible for capturing

their corresponding data. It should be noted that the functionality
for collecting call and text logs is not listed in Table 1 but is
supported (for Android only). However, as collecting these
types of data is against Google’s policy, they are not included
in the Google Play Store version.
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DiaFocus: Adaptive Assessment in Long-Term Management of T2D • 13

(a) (b) (c)

Fig. 7. The UI design of the ‘Home’ and ‘Data Card’ pages of the DiaFocus mobile app (final design). (a) Home page showing
the diabetes status overview and the list of surveys to answer. (b) Home page showing the list of ‘Data Cards’ each showing
collected data, both from sensors and patient-reported. (c) Patient-reported data entry of a ‘measure’ (number of smoked
cigare�es).

Health database on the phone. By using the HealthPackage
4, CAMS and thereby DiaFocus can collect this

BGM data. In order to support cross-platform sensing, the Health Package can also collect data from Google Fit.
However, since the Accu-Chek Connect app for Android does not support Google Fit, DiaFocus only collects
blood glucose data directly from BGM devices on iOS. Therefore, on Android, the user has to self-report blood
glucose data in the app.

5.2 DiaFocus Smartphone User Experience
As shown in Figure 6, the DiaFocus app has UI components for (i) user authentication to CARP, (ii) �lling in the
informed consent, (iii) a home page, (iv) �lling in questionnaires, (v) handling chapters and diaries, (vi) showing
data cards, and (vii) consultation preparation. User authorization to CARP is handled by CAMS and the informed
consent �ow and the questionnaires are implemented using RP and use the UI components provided by these
packages.
Figure 7a shows the home page of the app. The top card (rounded box) represents the current chapter and

shows how the patient is doing in terms of handling his/her diabetes along four core parameters: well-being,
diabetes management, blood sugar, and lifestyle. Each �eld is color coded (green/yellow/red) re�ecting how
4CARP Health Package: https://pub.dev/packages/carp_health_package/ (Accessed November 2022)

, Vol. 1, No. 1, Article . Publication date: February 2023.
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Fig. 5. The UI design of the mCardia home screen (final design). The main UI element is the “wheel” which shows the
detailed recordings of HR, HRV, and MET level in a 24-hour clock.

provide information to the patient on the !rst time the app is installed and used (see Figure 4). These screens
include; (i) A set of informed consent screens, where the patient is informed about the purpose of the app and
the study and can sign the consent form; (ii) A screen for collection of demographic data; (iii) A screen where
the user grants permission to collect data from the phone (e.g., location data); (iv) A screen providing instruction
for use; and (v) A screen instructing the patient on how to mount the ECG device on their chest and pair it with
the phone.

Then the system was evaluated by three patients (P4: M/55; P5: F/60; and P6: M/70) who used it for 24–72 hours
on their own. Each patient was interviewed after using the system. The overall design and core features were well
received. Speci!cally, patients stated that the visualization of the data on the app was helpful to see if the system
was working. Patients argued that the system and continuous visualization increased their awareness of their
health. For example, P5 said that the “spikes” (HR and HRV) on the app was more interesting and informative than
the heart rate data displayed in the Fitbit tracker they used. When asked how the visualization was informative to
them, they said that the mCardia visualization provided them with an easy-to-understand, 24-hour visualization
of when their HR/HRV was in or out of the range. The patients also provided input for improvements of the UI
design of the app. For example, they wanted to be able to navigate back in time and see data from previous days,
and they had suggestions for improving the legends. All these issues were incorporated into the !nal UI design
as shown in Figures 5 and 6.

ACM Transactions on Computing for Healthcare, Vol. 3, No. 2, Article 20. Publication date: February 2022.



LOOKING AHEAD
Where is Digital Phenotyping in Mental Health Heading?
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What can we use sensing in mental health for?
Correlation

– self-reported mood
– mobility
– social activity
– physical activity
– voice
– ...

Classification
– disease classification
– state (e.g., manic/depressive episodes)

Prediction
– mood forecasting (1-5 days)
– relapse / remission
– readmission

(c) Jakob E. Bardram – www.bardram.net39
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Monitoring – overcoming the “snapshot” problem
– ambulatory, in-the-home, contextual, ”in-the-wild”, ...
– long-term, trends, deviations, ...
– continuously, real-time, ...

Diagnosis
– ambulatory
– early
– more precise

Research – clinical | industrial
– (digital) biomarkers ~ digital phenotyping
– clinical evidence, real-world evidence
– phase 5 studies

(c) Jakob E. Bardram – www.bardram.net40

What can we use sensing in mental health for?
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What can Digital Phenotyping be used for?
DIGITAL HEALTH

– Medical Product as part of the 
patient’s life (Digital Therapeutics 
(DTx))

– Patient-generated Health Data 
collected from digital health 
technologies allows us to understand 
patient behavior in the context of their 
daily lives 

STUDY MEDICAL PRODUCTS
– Can transform how we study medical 

products – pharmacological & medical 
device technology

– De-centralized clinical trials
– Capture real-world evidence (RWE)

Digital Health Section41

www.fda.gov/digitalhealth 9

Digital Health: Part of a Patient’s Lifestyle
Patient-generated health data (PGHD) collected from digital health technologies 
(DHTs) allows us to understand patient behavior in the context of their daily lives

www.fda.gov/digitalhealth 10

Enable Remote Data Collection in 
Decentralized Clinical Investigation
• More frequent or continuous monitoring 

compared to traditional methods
• Longitudinal view of participant’s health status
• Improved recruitment and retention of 

participants leading to less missing data

Improve Access to Clinical Investigations
• Meet a participant where they are at for a 

clinical investigation
• Fewer visits to a study site places less burden on 

participants
• Reach a more diverse population, advancing 

health equity

Facilitate Innovative Clinical 
Investigation Endpoints
• New types of data to inform novel 

endpoints
• Complementary to other forms of data 

used to support a regulatory submission

Capture Real-World Data (RWD) and Patient-
Generated Health Data (PGHD)
• Data reflects a participant’s daily life
• Remote and longitudinal follow-up with 

participants beyond the clinical investigation
• More detailed picture of the impact of a medical 

product on a participant

Digital health technologies can transform 
how we study medical products

10
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X-Ray machine ca. 
1950 [Wikipedia]

MRI Scanner - Northern Lincolnshire 
and Goole NHS Foundation Trust
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Early Holter Monitoring 
setup [Wikipedia]
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Open Questions
• Is the Smartphone a good hardware / sensor platform for mental health?

– maybe there is a need for dedicated hardware and devices?
– with dedicated sensors for health (and not piggybacking on other sensors designed for other purposes)

– which would be much more application- / health-specific
– could be regulated as a medical device
– not controlled by the monopoly of Apple & Google

• Wearable and/or implantable biomedical / physiological sensors
– Heartrate (HR) & electrocardiograph (ECG)
– Electroencephalography (EEG)
– Electrodermal Activity (EDA) 
– Electrochemical (e.g., Cortisol, Dopamine)

44 (c) Jakob E. Bardram – www.bardram.net
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Observing the activities of SNS and HPA axis, therefore, provides the opportunity to access
the health status, including mental state.

Figure 1. Physiological reactions to stressors and representative methods for measuring the stress
reactions. EEG, electroencephalography; ECG, electrocardiograph; PPG, photoplethysmography;
EDA, electrodermal activity; and EC, electrochemical.

Short-lasting daily stressors trigger acute stress, and our body is usually resilient
to such stress; excessive and/or prolonged stress, however, damages the body, resulting
in physiological illnesses (e.g., high blood pressure) and can increase the risk of devel-
oping mental problems (e.g., depression) [8]. To prevent the severe mental problems by
timely carrying out appropriate stress management, it is critical to objectively monitor
the physiological and biochemical signs associated with the SNS and HPA axis and ulti-
mately associated with stress, in a continuous or on-demand manner. Currently, stress
level measurement largely relies on subjective, time-consuming methods, mainly clinical
interviews and self-reporting questionnaires. These methods require trained clinicians for
data collection and interpretation, inevitably limiting their accessibility. And these methods
are subject to reporting unreliable results due to personal bias, possibly confounding the
subsequent clinical decision making for mental health treatments [9,10]. In this context,
there has been an increasing interest in wearable sensors that can collect in real time the
biosignals associated with mental status [11]. This review gives an overview of recent
developments in several types of wearable sensors, with more focus on sensor materials,
that can detect cardiac, respiratory, and perspiratory activities and/or molecular secretion,
which can be utilized to support mental health management.

2. Wearable Sensors for Monitoring Cardiac Activity
Stressors induce changes in the myocardial activity facilitating blood distribution

to vital organs, and this can be quantified with heart rate (i.e., the number of heartbeats
per minute), stroke volume (i.e., the blood volume pumped by a single heartbeat), and
the vascular activity (i.e., the contraction and dilation of blood vessels changing the local
blood pressure). Heartbeat is one of the most generally used biosignals for examining
the physical and mental status. Among the metrics that characterize heartbeat, heart rate
variability (HRV, beat-to-beat variability) is used as a clinical sign of mental stress due to its
high correlation with the ANS and several mental disorders (Figure 2A) [12]. For instance,

M Kang & K Chai (2022). “Wearable 
Sensing Systems for Monitoring 
Mental Health”. Sensors, 22(994)
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Figure 5. Wearable electrochemical immunosensors for detecting cortisol (stress hormone).
(A) Mental stress-relevant molecular secretions into biofluids can be monitored by electrochemical
methods. (B) Patch-type sensor fabricated on a flexible poly(ethylene glycol terephthalate) substrate.
The sensor chip contains near field communication module for wireless energy supply and wireless
data transmission. (C) Bandage-type sensor with inkjet-printed electrode on a polyimide substrate.
(D) Cortisol-detecting conductive fiber. HPA, hypothalamic–pituitary–adrenal; BSA, bovine serum
albumin; and PEG, poly(ethylene glycol).

Electrochemical cortisol immunosensors with different form factors are shown in
Figure 5. Their structures are different, but all of them have a three-electrode system
consisting of working, reference, and counter electrodes for reliable measurement.

The most common form adopted for wearable electrochemical sensors is based on a
patch. Figure 5B shows the photo and fabrication schematics of a patch-type sensor that
has a flexible substrate (poly(ethylene glycol terephthalate)) where Ag/AgCl and carbon
were printed to act as reference and counter electrodes, respectively, and Au nanoparticles
(NPs) were deposited to form a working electrode [41]. Au NPs were functionalized with
cortisol antibody via a linker molecule (poly(ethylene glycol) with carboxyl and thiol
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From Sensing to Acting
Novel Technological Topics 

– Actuator Hardware & Technology
– Operating Systems & Programming APIs
– AI & ML Models
– UI Technology and UX

Challenges
– Safety
– Autonomy
– Accountability

(c) Jakob E. Bardram – www.bardram.net

THEME ARTICLE: GRAND CHALLENGES

From Sensing to Acting—Can Pervasive
Computing Change theWorld?
Jakob E. Bardram , Technical University of Denmark, 2800, Lyngby, Denmark

Computing technology has indeed become pervasive. Taking a quick look around
me, I see computing systems in literally everything—in the cars, televisions,
smartphones, restaurants, ski-lifts, heating systems, sports trackers, medical
devices, etc. This has been realized by a tremendous development in hardware and
software technology in terms of CPUs, memory, sensors, operating systems,
network, display, etc. However, looking back at this technology development—and
the research done in the field—it strikes me that something is missing. One of the
grand visions was to make the computer “invisible,” as framed by Weiser. But it
seems like instead of computing becoming more invisible, it is taking up more of the
user’s attention. In this article, I argue that this is because (pervasive) computing
has only come halfway. Much effort has been done in terms of sensing and
understanding the world around the user, while much less effort has been put into
helping the user actually doing anything. By providing examples mostly taken from
the medical domain, this article discusses if moving from “sensing” and “thinking” to
actually “doing” something is possible and what challenges are associated with this
movement.

Pervasive and ubiquitous computing builds on
the idea of trying to integrate computing into
the “fabric” of human life and make computers

more aware of, and integrated into the physical world
and the activities of people. Going back to the initial
research on “context-aware” computing in the seminal
paper on “Context-Aware Computing Applications,”
Bill Schilit, Norman Adams, and Roy Want18 wrote that
“context-aware software adapts according to the loca-
tion of use, the collection of nearby people, hosts, and
accessible devices, as well as to changes to such
things over time. A system with these capabilities can
examine the computing environment and react to
changes to the environment.” [p. 85]. Since then,
almost 30 years of research and development have
brought forth a fantastic set of technologies in the
Ubicomp family: Advanced mobile phones with power-
ful processing power, memory, network connectivity,
sensors, and interactive displays; wearable computers,

including smartwatches with similar powerful resour-
ces; wireless networking technology from low-power
networks to high-speed cellular and wireless net-
works; and interactive displays in all sizes and forms.
In addition, the software in terms of operating sys-
tems, programming application programming interfa-
ces (APIs), and user-interface software technology
has seen a similar development in the Ubicomp space.
And the recent revival of artificial intelligence (AI) and
machine learning (ML) has provided the field with new
opportunities for analyzing data collected via these
devices.

Despite these fantastic and promising achieve-
ments within the Ubicomp family of hardware and
software technology, it still seems like something is
missing. To me, it seems like we have only come half
the way. We have been very good at collecting data
and deriving some level of understanding from this.
We are, however, not very good at using this for any-
thing. It is worth noting that in the original definition
of context-aware computing previously, the words
“adapts” and “reacts” are used, thus assuming some
active action from the computer’s side. Take the
smartphone, for example. The smartphone is the Ubi-
comp device par excellence. But the whole device is

1536-1268! 2022 IEEE
Digital Object Identifier 10.1109/MPRV.2022.3182489
Date of publication 7 July 2022; date of current version 20
September 2022.
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Outline
BACKGROUND
• Digital Phenotyping
• Copenhagen Research Platform (CARP)

CHALLENGES
• (Technical) Challenges in Mobile Sensing (in 

Mental Health)
• ... and what to do about them

LOOKING AHED
• What is coming
• How do I see the future of mobile sensing in 

Mental Health?

(c) Jakob E. Bardram – www.bardram.net49
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Diagnosis.... or Overdiagnosis?
Overdiagnosis is a huge problem

– ... especially in mental health

Medical technology
– diagnostic tools
– wearable devices / smartwatches
– apps
– big data / AI / personal medicine

... is a major source for over-diagnosis

... and may even worsening (e.g., rumination)

... which again leads to high inequality in healthcare

caveat :: this is spoken from a Danish, Scandinavian, 
publicly funded healthcare system

(c) Jakob E. Bardram – www.bardram.net53
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Sensing Devices?

(c) Jakob E. Bardram – www.bardram.net

?

?
U.S. Food & Drug Administration 
10903 New Hampshire Avenue  D o c  I D #  0 4 0 1 7 . 0 2 . 1 3  
Silver Spring, MD 20993  
www.fda.gov 

Apple Inc. 
Ə Donna-Bea Tillman 
Senior Consultant, Biologics Consulting Group 
Biologics Consulting Group, Inc. 
1555 King St, Suite 300 
Alexandria, Virginia 22314  

Re:  DEN180044 
Trade/Device Name:  ECG App 
Regulation Number:  21 CFR 870.2345 
Regulation Name:  Electrocardiograph software for over-the-counter use 
Regulatory Class:  Class II 
Product Code:  QDA 
Dated:  August 13, 2018 
Received:  August 14, 2018 

Dear Donna-Bea Tillman: 

The Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) has 
completed its review of your De Novo request for classification of the ECG App, an over-the-counter device 
under 21 CFR Part 801 Subpart C, with the following indications for use:  

The ECG app is a software-only mobile medical application intended for use with the Apple Watch 
to create, record, store, transfer, and display a single channel electrocardiogram (ECG) similar to a 
Lead I ECG. The ECG app determines the presence of atrial fibrillation (AFib) or sinus rhythm on a 
classifiable waveform. The ECG app is not recommended for users with other known arrhythmias. 

The ECG app is intended for over-the-counter (OTC) use. The ECG data displayed by the ECG app 
is intended for informational use only. The user is not intended to interpret or take clinical action 
based on the device output without consultation of a qualified healthcare professional. The ECG 
waveform is meant to supplement rhythm classification for the purposes of discriminating AFib from 
normal sinus rhythm and not intended to replace traditional methods of diagnosis or treatment. 

The ECG app is not intended for use by people under 22 years old. 

FDA concludes that this device should be classified into Class II.  This order, therefore, classifies the ECG 
App, and substantially equivalent devices of this generic type, into Class II under the generic name 
electrocardiograph software for over-the-counter use. 

FDA identifies this generic type of device as:  

4FQUFNCFS��������
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What has been designed?
• Systematic review of technologies (not studies!)

– as published in peer-reviewed literature
– 2009-2019 
– mobile & wearable technologies (‘ubicomp’)
– severe mental illness (SMI) as defined by ICD-10

• Results
– 45 systems – 32 clinical | 13 non-clinical

• “Typology”
– sensing
– clinical assessment
– predictive modelling
– intervention models
– user interaction

J. E. Bardram and A. Matic, “A Decade of Ubiquitous
Computing Research in Mental Health,” IEEE Pervasive
Computing, p. 1–11, 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

A Decade of Ubiquitous
Computing Research in
Mental Health
Jakob E. Bardram
Department of Health Technology, Technical
University of Denmark

Aleksandar Matic
Telefonica Innovacion Alpha

Abstract—Mental health represents a huge disease and societal burden and a significant

body of research in ubiquitous computing has been devoted to the design of technologies

for continuous monitoring, diagnosis, and care of mental health conditions. This paper

reviews a decade of research into technologies for mental health, focusing on the use of

mobile and wearable technology. The review found 46 systems that are analyzed in a

historical context and discussed according to whichmental disorder they target, the type

of technology, and the type and size of the clinical studies they have been used in. Finally,

the paper presents inputs from nine leading researchers in the domain and discuss

important technical and clinical challenges in the design of ubiquitous computing

technology for the next decade.

& MENTAL HEALTH REPRESENTS a huge disease

and societal burden.1 Due to its episodic nature,

the traditional healthcare model is considered to

be suboptimal to address this burden and to

improve chronic mental conditions.2 “Anytime

and everywhere” ubiquitous technology was seen

early on as an opportunity to address continuous

monitoring, diagnosis, and care of mental health

conditions, thereby enabling an extension of care

delivery beyond the reach of traditional health-

care. In particular, mobile and wearable technolo-

gies—with their ability to track behavioral,

physiological, and contextual signals—were seen

as a potential enabler of a continuous symptom

monitoring and personalized intervention.3;4

Last year marked the ten year anniversary

since smartphones (the first iPhone appeared in

2007 and the first stable Android phone in 2009)

have become widely available as an open plat-

form and have since then been used for creating

novel personalized health applications. The earlyDigital Object Identifier 10.1109/MPRV.2019.2925338

Feature ArticleFeature Article

2019 Published by the IEEE Computer Society 1536-1268 ! 2019 IEEE 1
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Global Health Metrics

1204 www.thelancet.com   Vol 396   October 17, 2020

Global burden of 369 diseases and injuries in 204 countries 
and territories, 1990–2019: a systematic analysis for the 
Global Burden of Disease Study 2019
GBD 2019 Diseases and Injuries Collaborators*

Summary
Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries 
along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global 
Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, 
publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and 
collectively exhaustive list of diseases and injuries.

Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and 
disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. 
Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, 
health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific 
death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian 
process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD 
population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate 
YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, 
prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were 
multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered 
results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of 
schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every 
metric using the 25th and 975th ordered 1000 draw values of the posterior distribution.

Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After 
taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the 
pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared 
with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. 
Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower 
respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough 
(ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked 
tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked 
first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years 
were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain 
(fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the 
top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a 
marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. 
In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all 
disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower 
end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI.

Interpretation As disability becomes an increasingly large component of disease burden and a larger component of 
health expenditure, greater research and development investment is needed to identify new, more effective 
intervention strategies. With a rapidly ageing global population, the demands on health services to deal with 
disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of 
universal and more geographically specific influences on health reinforces the need for regular reporting on 
population health in detail and by underlying cause to help decision makers to identify success stories of disease 
control to emulate, as well as opportunities to improve.
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(Figure 2 continues on next page)

Leading causes 1990 Percentage of DALYs
1990

Leading causes 2019 Percentage of DALYs
2019

Percentage change in
number of DALYs,
1990–2019

Percentage change in
age-standardised DALY 
rate, 1990–2019

A All ages

B 0–9 years

Communicable, maternal, neonatal, and nutritional diseases  
Non-communicable diseases 
Injuries

1 Neonatal disorders 10·6 (9·9 to 11·4) 1 Neonatal disorders 7·3 (6·4 to 8·4)
2 Lower respiratory infections 8·7 (7·6 to 10·0) 2 Ischaemic heart disease 7·2 (6·5 to 7·9)
3 Diarrhoeal diseases 7·3 (5·9 to 8·8) 3 Stroke 5·7 (5·1 to 6·2)
4 Ischaemic heart disease 4·7 (4·4 to 5·0) 4 Lower respiratory infections 3·8 (3·3 to 4·3)
5 Stroke 4·2 (3·9 to 4·5) 5 Diarrhoeal diseases 3·2 (2·6 to 4·0)
6 Congenital birth defects 3·2 (2·3 to 4·8) 6 COPD 2·9 (2·6 to 3·2)
7 Tuberculosis 3·1 (2·8 to 3·4) 7 Road injuries 2·9 (2·6 to 3·0) –31·0 (–37·1 to –25·4)
8 Road injuries 2·7 (2·6 to 3·0) 8 Diabetes 2·8 (2·5 to 3·1)
9 Measles 2·7 (0·9 to 5·6) 9 Low back pain 2·5 (1·9 to 3·1)

10 Malaria 2·5 (1·4 to 4·1) 10 Congenital birth defects 2·1 (1·7 to 2·6)
11 COPD 2·3 (1·9 to 2·5)

2·0 (1·6 to 2·7)
11 HIV/AIDS 1·9 (1·6 to 2·2)

12 Protein-energy malnutrition 12 Tuberculosis 1·9 (1·7 to 2·0)
13 Low back pain 1·7 (1·2 to 2·1) 13 Depressive disorders
14 Self-harm 1·4 (1·2 to 1·5) 14 Malaria 1·8 (0·9 to 3·1)
15 Cirrhosis 1·3 (1·2 to 1·5) 15 Headache disorders
16 Meningitis 1·3 (1·1 to 1·5) 16 Cirrhosis 1·8 (1·6 to 2·0)
17 Drowning 1·3 (1·1 to 1·4)

1·1 (0·2 to 2·4)
1·1 (0·8 to 1·5)

17 Lung cancer 1·8 (1·6 to 2·0)
18 Headache disorders 18 Chronic kidney disease
19 Depressive disorders 19 Other musculoskeletal
20 Diabetes 1·1 (1·0 to 1·2) 20 Age-related hearing loss
21 Lung cancer 1·0 (1·0 to 1·1) 21 Falls 1·5 (1·4 to 1·7)
22 Falls 1·0 (0·9 to 1·2)

1·0 (0·7 to 1·3)
0·9 (0·9 to 1·0)

22 Self-harm 1·3 (1·2 to 1·5) –38·9 (–44·3 to –33·0)
23 Dietary iron deficiency 23 Gynaecological diseases 1·2 (0·9 to 1·5)
24 Interpersonal violence 24 Anxiety disorders 1·1 (0·8 to 1·5)
25 Whooping  cough 0·9 (0·4 to 1·7)

0·8 (0·6 to 1·1)
0·8 (0·8 to 0·9)

25 Dietary iron deficiency

27 Age-related hearing loss 26 Interpersonal violence –23·8 (–28·6 to –17·8)
29 Chronic kidney disease 40 Meningitis 0·6 (0·5 to 0·8)
30 HIV/AIDS 0·8 (0·6 to 1·0) 41 Protein-energy malnutrition
32 Gynaecological diseases 0·8 (0·6 to 1·0) 46 Drowning 0·5 (0·5 to 0·6)
34 Anxiety disorders 0·7 (0·5 to 1·0)

0·7 (0·5 to 1·0)
55 Whooping  cough 0·4 (0·2 to 0·7)

35 Other musculoskeletal 71 Measles 0·3 (0·1 to 0·6)

1 Neonatal disorders 23·0 (22·0 to 24·1) 1 Neonatal disorders 32·4 (30·7 to 34·1)
2 Lower respiratory infections 17·0 (14·9 to 19·7) 2 Lower respiratory infections 11·6 (10·5 to 12·6)
3 Diarrhoeal diseases 13·1 (10·7 to 15·1) 3 Diarrhoeal diseases 9·3 (7·9 to 10·8)
4 Congenital birth defects 6·6 (4·6 to 10·0) 4 Congenital birth defects 8·6 (7·4 to 10·7)
5 Measles 5·7 (2·0 to 11·8) 5 Malaria 6·4 (3·3 to 10·8)
6 Malaria 4·6 (2·5 to 7·5)

4·1 (3·1 to 5·5)
6 Meningitis 2·1 (1·8 to 2·5)

7 Protein-energy malnutrition 7 Dietary iron deficiency –8·2 (–12·3 to –4·1)
8 Meningitis 2·3 (2·0 to 2·7) 8 Protein-energy malnutrition
9 Whooping cough 1·9 (0·8 to 3·8) 9 Whooping cough 1·9 (0·9 to 3·3)
10 Drowning 1·8 (1·5 to 2·1) 10 STIs 1·4 (0·5 to 2·8)
11 Tuberculosis 1·8 (1·5 to 2·1) 11 Measles 1·3 (0·4 to 2·7)
12 Tetanus 1·7 (1·4 to 1·9) 12 Road injuries 1·1 (1·0 to 1·4)
13 Road injuries 1·3 (1·1 to 1·5)

0·9 (0·6 to 1·3)
13 Tuberculosis 1·0 (0·9 to 1·2)

14 Dietary iron deficiency 14 HIV/AIDS 1·0 (0·9 to 1·2)
15 STIs 0·7 (0·2 to 1·5) 15 iNTS 1·0 (0·6 to 1·5)
16 Typhoid and paratyphoid 0·7 (0·3 to 1·3) 16 Drowning 0·9 (0·8 to 1·1)
17 Foreign body 0·6 (0·5 to 0·7) 17 Haemoglobinopathies 0·9 (0·7 to 1·0)
18 HIV/AIDS 0·6 (0·5 to 0·7) 18 Typhoid and paratyphoid 0·8 (0·4 to 1·5)
19 Encephalitis 0·5 (0·4 to 0·7) 19 Asthma 0·5 (0·4 to 0·8)
20 Acute hepatitis 0·5 (0·4 to 0·5) 20 Foreign body 0·5 (0·4 to 0·5)
21 Haemoglobinopathies 0·4 (0·3 to 0·6) 21 EMBID 0·5 (0·4 to 0·6)
22 Leukaemia 0·4 (0·3 to 0·6) 22 Sudden infant death 0·5 (0·2 to 1·0)
23 Sudden infant death 0·4 (0·2 to 0·9) 23 Idiopathic epilepsy 0·5 (0·3 to 0·6)
24 Asthma 0·4 (0·3 to 0·5) 24 Other unspecified infectious
25 Falls 0·4 (0·3 to 0·5) 25 Dermatitis 0·4 (0·2 to 0·7) –6·0 (–6·9 to –5·1)

28 Idiopathic epilepsy 0·3 (0·2 to 0·4)
0·3 (0·2 to 0·4)

26 Leukaemia 0·4 (0·4 to 0·5)
30 Other unspecified infectious 27 Falls 0·4 (0·3 to 0·5)
33 iNTS 0·3 (0·1 to 0·4) 28 Encephalitis 0·4 (0·3 to 0·5)
34 EMBID 0·3 (0·2 to 0·3) 32 Tetanus 0·3 (0·3 to 0·5)
44 Dermatitis 0·2 (0·1 to 0·3) 39 Acute hepatitis 0·3 (0·2 to 0·3)

–35·4 (–44·8 to –23·8)
–69·6 (–76·3 to –61·6)
–68·5 (–75·9 to –58·4)
–40·1 (–55·1 to –17·9)
–38·5 (–63·1 to –6·5)
–61·0 (–69·2 to –51·1)

–78·3 (–85·5 to –69·9)
–53·2 (–75·6 to –20·4)
–14·9 (–30·1 to 2·5)
–90·5 (–92·9 to –87·6)
–63·7 (–70·8 to –48·8)
–75·5 (–80·6 to –69·2)
–25·0 (–35·3 to –13·6)
61·4 (20·6 to 109·3)

–79·0 (–82·6 to –72·2)
–13·7 (–34·3 to 14·7)
–50·7 (–62·5 to –36·9)
–37·5 (–50·0 to –21·5)
–63·6 (–70·2 to –57·1)
–22·1 (–36·1 to –6·0)
–46·9 (–61·7 to –30·0)
–34·0 (–49·1 to –3·8)
–29·3 (–50·3 to 3·3)

–55·3 (–69·5 to –37·0)
–48·3 (–68·7 to –22·6)
–68·5 (–77·9 to –50·2)
–91·2 (–93·8 to –85·6)
–74·1 (–82·6 to –61·1)

–36·2 (–45·4 to –24·7)
–69·1 (–75·9 to –60·9)
–67·8 (–75·3 to –57·2)
–41·6 (–54·6 to –17·4)
–36·9 (–61·4 to –2·2)
–59·7 (–68·1 to –49·3)

–0·8 (–5·3 to 3·6)
–78·1 (–85·0 to –68·9)
–54·7 (–74·7 to –17·3)
–16·3 (–30·7 to 1·7)
–90·0 (–92·6 to –86·9)
–61·5 (–68·7 to –45·0)
–74·5 (–79·8 to –67·8)
–18·6 (–35·6 to 3·6)
68·3 (27·4 to 121·2)

–77·6 (–81·3 to –70·1)
–10·3 (–30·3 to 22·5)
–46·7 (–59·1 to –31·1)
–32·2 (–46·2 to –14·5)
–62·9 (–69·6 to –56·2)
–18·9 (–33·3 to –0·9)
–50·6 (–61·6 to –29·8)
–30·7 (–45·8 to 3·6)
–28·4 (–48·3 to 7·8)

2·7 (1·7 to 3·7)

–54·8 (–67·7 to –32·9)
–47·2 (–67·0 to –18·0)
–67·6 (–76·7 to –47·6)
–91·3 (–93·8 to –85·6)
–73·1 (–81·7 to –59·1)

2·0 (1·3 to 2·9)
2·0 (1·7 to 2·3)

0·4 (0·3 to 0·6)

–57·2 (–64·4 to –48·6)
–74·5 (–82·0 to –64·5)
–68·2 (–71·9 to –62·8)
–56·3 (–75·6 to –20·3)
–90·4 (–92·8 to –87·5)

–6·8 (–8·7 to –4·9)
–0·1 (–1·0 to 0·7)

–16·4 (–18·7 to –14·0)

–14·5 (–22·5 to –7·4)
–1·8 (–3·7 to –0·1)
30·7 (27·6 to 34·3)

6·3 (0·2 to 12·4)
–16·2 (–24·0 to –8·2)
–26·8 (–32·5 to –19·0)

1·1 (–4·2 to 2·9)
–37·8 (–61·9 to –6·2)

–1·8 (–2·9 to –0·8)
–62·8 (–66·6 to –58·0)
58·5 (37·1 to 89·2)

–40·0 (–52·7 to –17·1)
–16·3 (–17·1 to –15·5)
24·4 (18·5 to 29·7)

–39·8 (–44·9 to –30·2)
–64·6 (–71·7 to –54·2)
–62·5 (–69·0 to –54·9)
–35·2 (–40·5 to –30·5)
–28·6 (–33·3 to –24·2)
–32·6 (–42·1 to –21·2)–32·3 (–41·7 to –20·8)

50·4 (39·9 to 60·2)
32·4 (22·0 to 42·2)

–56·7 (–64·2 to –47·5)
–57·5 (–66·2 to –44·7)
25·6 (15·1 to 46·0)

2·4 (–6·9 to 10·8)
147·9 (135·9 to 158·9)
46·9 (43·3 to 50·5)

–37·3 (–50·6 to –12·8)
127·7 (97·3 to 171·7)
–41·0 (–47·2 to –33·5)

61·1 (56·9 to 65·0)
–29·4 (–56·9 to 6·6)
56·7 (52·4 to 62·1)
33·0 (22·4 to 48·2)
69·1 (53·1 to 85·4)
93·2 (81·6 to 105·0)

128·9 (122·0 to 136·3)
82·8 (75·2 to 88·9)
47·1 (31·5 to 61·0)
–5·6 (–14·2 to 3·7)

48·7 (45·8 to 51·8)
53·7 (48·8 to 59·1)
13·8 (10·5 to 17·2)1·1 (0·8 to 1·5)

1·6 (1·2 to 2·1)
1·6 (1·2 to 2·1)
1·6 (1·5 to 1·8)

1·8 (0·4 to 3·8)

1·8 (1·4 to 2·4)

–89·8 (–92·3 to –86·8)
–54·5 (–74·6 to –16·9)
–60·6 (–65·2 to –53·6)
–71·1 (–79·6 to –59·7)
–51·3 (–59·4 to –42·0)
10·2 (3·2 to 19·2)1·1 (1·0 to 1·2)

0·6 (0·5 to 0·7)
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